30 research outputs found

    Controlled Oil/Water Partitioning of Hydrophobic Substrates Extending the Bioanalytical Applications of Droplet-Based Microfluidics.

    Get PDF
    Functional annotation of novel proteins lags behind the number of sequences discovered by the next-generation sequencing. The throughput of conventional testing methods is far too low compared to sequencing; thus, experimental alternatives are needed. Microfluidics offer high throughput and reduced sample consumption as a tool to keep up with a sequence-based exploration of protein diversity. The most promising droplet-based systems have a significant limitation: leakage of hydrophobic compounds from water compartments to the carrier prevents their use with hydrophilic reagents. Here, we present a novel approach of substrate delivery into microfluidic droplets and apply it to high-throughput functional characterization of enzymes that convert hydrophobic substrates. Substrate delivery is based on the partitioning of hydrophobic chemicals between the oil and water phases. We applied a controlled distribution of 27 hydrophobic haloalkanes from oil to reaction water droplets to perform substrate specificity screening of eight model enzymes from the haloalkane dehalogenase family. This droplet-on-demand microfluidic system reduces the reaction volume 65 000-times and increases the analysis speed almost 100-fold compared to the classical test tube assay. Additionally, the microfluidic setup enables a convenient analysis of dependences of activity on the temperature in a range of 5 to 90 °C for a set of mesophilic and hyperstable enzyme variants. A high correlation between the microfluidic and test tube data supports the approach robustness. The precision is coupled to a considerable throughput of >20 000 reactions per day and will be especially useful for extending the scope of microfluidic applications for high-throughput analysis of reactions including compounds with limited water solubility.ERC Advanced Investigator grant no. 69566

    Raman Microspectroscopic Analysis of Selenium Bioaccumulation by Green Alga Chlorella vulgaris

    Get PDF
    Selenium (Se) is an element with many commercial applications as well as an essential micronutrient. Dietary Se has antioxidant properties and it is known to play a role in cancer prevention. However, the general population often suffers from Se deficiency. Green algae, such as Chlorella vulgaris, cultivated in Se-enriched environment may be used as a food supplement to provide adequate levels of Se. We used Raman microspectroscopy (RS) for fast, reliable, and non-destructive measurement of Se concentration in living algal cells. We employed inductively coupled plasma-mass spectrometry as a reference method to RS and we found a substantial correlation between the Raman signal intensity at 252 cm(-1) and total Se concentration in the studied cells. We used RS to assess the uptake of Se by living and inactivated algae and demonstrated the necessity of active cellular transport for Se accumulation. Additionally, we observed the intracellular Se being transformed into an insoluble elemental form, which we further supported by the energy-dispersive X-ray spectroscopy imaging

    Clinical Study Comparison of Long-Term Effect of Dual-Chamber Pacing and Alcohol Septal Ablation in Patients with Hypertrophic Obstructive Cardiomyopathy

    Get PDF
    Introduction. Nonpharmacological treatment of patients with hypertrophic obstructive cardiomyopathy (HOCM) comprises surgical myectomy (SME), alcohol septal ablation (ASA), and dual-chamber (DDD) pacing. The aim of the study was to compare the long-term effect of DDD pacing and ASA in symptomatic HOCM patients. Patients and Methods. We evaluated retrospective data from three cardiocenters; there were 24 patients treated with DDD pacing included and 52 treated with ASA followed for 101 ± 49 and 87 ± 23 months, respectively. Results. In the group treated with DDD pacing, the left ventricle outflow tract gradient (LVOTG) decreased from 82 ± 44 mmHg to 21 ± 21 mmHg, and NYHA class improved from 2.7 ± 0.5 to 2.1 ± 0.6 (both < 0.001). In the ASA-treated group, a decline in LVOTG from 73 ± 38 mmHg to 24 ± 26 mmHg and reduction in NYHA class from 2.8 ± 0.5 to 1.7 ± 0.8 were observed (both < 0.001). The LVOTG change was similar in both groups ( = 0.264), and symptoms were more affected by ASA ( = 0.001). Conclusion. ASA and DDD pacing were similarly effective in reducing LVOTG. The symptoms improvement was more expressed in patients treated with ASA

    Roadmap for Optical Tweezers 2023

    Get PDF
    Optical tweezers are tools made of light that enable contactless pushing, trapping, and manipulation of objects ranging from atoms to space light sails. Since the pioneering work by Arthur Ashkin in the 1970s, optical tweezers have evolved into sophisticated instruments and have been employed in a broad range of applications in life sciences, physics, and engineering. These include accurate force and torque measurement at the femtonewton level, microrheology of complex fluids, single micro- and nanoparticle spectroscopy, single-cell analysis, and statistical-physics experiments. This roadmap provides insights into current investigations involving optical forces and optical tweezers from their theoretical foundations to designs and setups. It also offers perspectives for applications to a wide range of research fields, from biophysics to space exploration
    corecore